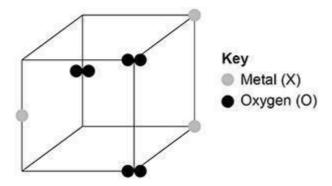


KnowledgeSet

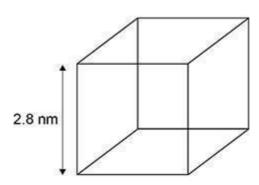
Questions are for both triple and combined science students unless indicated in the question Q1.

This	question is about elements, compounds and mixtures	3.			
(a)	Substance A contains only one type of atom.				
	Substance A does not conduct electricity. Which				
	type of substance is A?				
	Tick (✓) one box.				
	Compound				
	Metallic element				
	Mixture				
	Non-metallic element				
		(1)			
(b)	Substance B contains two types of atoms.				
	The atoms are chemically combined together in fixe	ed proportions.			
	Which type of substance is B?				
	Tick (\checkmark) one box.				
	Compound				
	Metallic element				
	Mixture				
	Non-metallic element	3			
		(1)			
(c)	What is the name of the elements in Group 0 of the	periodic table? Tick			


 (\checkmark) one box.

	Alkali metals		
	Halogens		
	Noble gases		
	Transition metals		
(-1)		0.1	(1)
(d)	Which statement about the elements in Gro	oup 0 is correct? Tick	
	(\checkmark) one box.		
	All elements in the group are very reactive.		
	All elements in the group form negative ions.		
	The boiling points increase down the group.		
	The relative atomic masses (Ar) decrease down the group.		
			(1)
(e)	Neon is in Group 0.		
	What type of particles are in a sample of ne	eon?	
	Tick (√) one box.		
	, <i>,</i>		
	Atoms		
	lons		
	Molecules		
			(1)
(f)	Figure 1 represents part of the structure of a	an oxide of a metal.	

Figure 1


Determine the empirical formula of this oxide.

Empirical formula = XO____ (1)

A nanoparticle of a metallic element is a cube.

Figure 2 shows a diagram of the nanoparticle.

Figure 2

(g) The surface area of a cube is given by the equation:

surface area = (length of side) 2×6

Calculate the surface area of the cube in Figure 2.

Give your answer to 2 significant figures. (triple only)

		Surface area (2 significant figures) = nn	12 (3)
	(h)	Fine and coarse particles of the metallic element are also cubes.	
		The length of a fine particle cube is 10 times smaller than the length of a coarse particle cube.	
		How does the surface area to volume ratio of the fine particle cube compare with that of the coarse particle cube?	
		Tick (\checkmark) one box. (triple only)	
		Both surface area to volume ratios are the same.	
		The surface area to volume ratio of the fine particle is 10 times greater.	
		The surface area to volume ratio of the fine particle is 10 times smaller.	
		(Т	(1) otal 10 marks)
Q2.			
	This c	question is about atomic structure and the periodic table.	
	Galliu	um (Ga) is an element that has two isotopes.	
	(a)	Give the meaning of 'isotopes'.	
		You should answer in terms of subatomic particles.	
			(2)
	(b)	The table below shows the mass numbers and percentage abundances of t	he

isotopes of gallium.

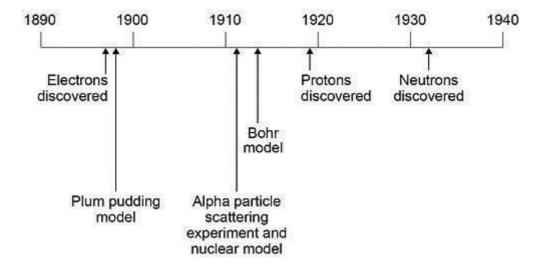
Mass number	Percentage abundance (%)
69	60
71	40

	Relative atomic mass (1 decimal place) =	
ι	um (Ga) is in Group 3 of the modern periodic table.	
		⁶⁹ Ga
	Number of electrons	
	Number of neutrons	
	What is the most likely formula of a gallium ion?	
	Tick (\checkmark) one box.	
	Ga+	
	Ga-	
	Ga3+	
	Ga3–	
	Gallium was discovered six years after Mendeleev published his periodic table	е.
	Give two reasons why the discovery of gallium helped Mendeleev's periodic table to become accepted.	
	1	

			(2) (Total 9 marks)		
Q3.					
	This	question is about models of the atom.			
	(a)	Atoms were first thought to be tiny spheres that could not be divided.			
		Which particle was discovered to change this model of the atom? Tick (\checkmark)			
		one box.			
		Electron			
		Neutron			
		Proton			
			(1)		
	(b)	The diagram below shows another model of the atom.			
		What is the name of this model of the atom?			
	(c)	A scientist fired particles at gold atoms.	(1)		
	(0)	Some of these particles were scattered.			
		The results led to a different model of the atom. Which			
		type of particle was fired at the gold atoms? Tick (✓)			
		one box.			

	Alpha		
	Electron		
	Neutron		
	Proton		
(d)	Which scientist first sudistances?	ggested that electrons orbit the nucleus at specific	(1)
	Tick (\checkmark) one box.		
	Bohr		
	Chadwick		
	Mendeleev		44)
(e)	electronsneutrons	used today has three subatomic particles:	(1)
	• protons.		
	Atoms of the same ele	ment have the same atomic number because they have	
	same number of	·	
	Atoms of the same ele have	ment can have different mass numbers because they	
	different numbers of	·	
	Atoms have no overall	charge because they have the same number of	
	and	d	
			(3)

(f) The radius of a nucleus is approximately 1 \times 10–14 m



The radius of an atom is approximately $1 \times 10-10$ m				
A teacher uses a ball of radius 1 cm to represent the nucleus.				
What could represent the atom on the same scale?				
Tick (√) one box.				
A ball of radius 10 cm				
A sports arena of radius 100 m				
An island of radius 10 km				
A planet of radius 1000 km				

(1) (Total 8 marks)

Q4. This question is about the development of scientific theories.

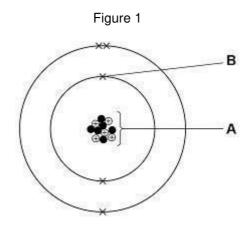
The diagram below shows a timeline of some important steps in the development of the model of the atom.

(a) The plum pudding model did not have a nucleus.

Describe three other differences between the nuclear model of the atom and the plum pudding model.

1			
•	 	 	

3		
Niels Bohr ada	pted the nuclear model.	
Describe the c	hange that Bohr made to the nuclear model.	
	·····	
	·····	
Mendeleev pub	olished his periodic table in 1869.	
Mondoloov arr	anged the elements in order of atomic weight.	
vieriueieev ari		
	en reversed the order of some pairs of elements.	
Mendeleev the		
Mendeleev the A student sugg arrange the ele	en reversed the order of some pairs of elements. gested Mendeleev's reason for reversing the order was to	
Mendeleev the A student sugg arrange the ele	en reversed the order of some pairs of elements. gested Mendeleev's reason for reversing the order was to ements in order of atomic number. de student's suggestion cannot be correct.	
Mendeleev the A student sugg arrange the ele Explain why th	en reversed the order of some pairs of elements. gested Mendeleev's reason for reversing the order was to ements in order of atomic number. de student's suggestion cannot be correct.	
Mendeleev the A student sugg arrange the ele Explain why th	en reversed the order of some pairs of elements. gested Mendeleev's reason for reversing the order was to ements in order of atomic number. de student's suggestion cannot be correct.	
Mendeleev the A student sugg arrange the ele Explain why th	en reversed the order of some pairs of elements. gested Mendeleev's reason for reversing the order was to ements in order of atomic number. de student's suggestion cannot be correct.	


(1) (Total 8 marks)

(1)

Q5.

This question is about atomic structure.

Figure 1 represents an atom of element Z.

(a) Name the parts of the atom labelled A and B.

Choose answers from the box.

	electron	neutron	nucleus	proton	
A					
- В					
					(2)

(b) Which particle has the lowest mass?

Choose the answer from the box.

electron	neutron nuclei	us proton
----------	----------------	-----------

·

(c) Which group of the periodic table contains element Z? UseFigure 1.

	Group					(1)
(d)	Give the atomic no	umber and the m	nass number o	of element Z. Us	se	(.,
	Figure 1.					
	Choose answers	from the box.				
	1	5	6	11	16	
	Atomic number			_	·	
	Mass number			_		
Drom	nine has two differer	at tupos of atom				(2)
	atoms have a differen	• •		same number	of protons.	
(e)	What is the name				or protone.	
` '	Tick (√) one box.	,				
	Compound					
	lon					
	Isotope					
	Molecule					
						(1)
(f)	The different type	s of bromine ato	m can be repr	esented as 35B	r and 35Br The	
	relative atomic ma	ass (<i>Ar</i>) of bromi	ne is 80			
	Which statement i bromine?	s true about the	number of ea	ch type of atom	in	
	Tick (\checkmark) one box.					
	There are fewer	Br atoms than	⁸¹ ₃₅ Br atoms.			

Page 11 of 38

There are	e more 35Br atoms th	an ⁸¹ Br atoms	S.		
There are atoms.	e the same number o	f 35Br atoms a	nd ⁸¹ ₃₅ Br		
				(Total	(1) 8 marks)
Q6.					
·	about elements, com				
_	ws five different subs		C, D and E.		
O and ● repre	sent atoms of differe	nt elements.			
		Figure 1			
Α	В	С	D	E	ę
8 8 0		• •	δ 8 8	& & & & & & & & & & & & & & & & & & &	
Use Figure 1 to a	answer parts (a) to (d	c)			
(a) Which sub	ostance is only one c	ompound?			
∵, Tick (√) o	-	·			
Α [В	С	D E	[(1)
(b) Which sub	ostance is a mixture o	of elements?			
∵, Tick (√) o					
Α [В	С	D E	[(1)
(c) Which sub	ostance is a mixture o	of an element a	and a compound?	Tick	
(√) one bo					
(1, 51.15					
A	В	С	D E		

Page 12 of 38

(1)

(2)

Substances are separated from a mixture using different methods.

(d) Draw one line from each method of separation to the substance and mixture it would separate.

Method of separation Substance and mixture blue food colour from a mixture of food colours chromatography copper from an alloy of copper and zinc copper sulfate from copper sulfate solution crystallisation ethanol from a mixture of ethanol and water

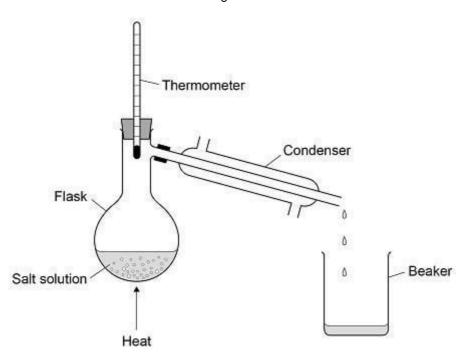
(e) Sand does not dissolve in water. A student separates a mixture of sand and water by filtration.

Draw a diagram of the apparatus the student could use. You

should label:

- · where the sand is collected
- where the water is collected.

Diagram



(3)

(f) A student distils a sample of salt solution to produce pure water.

Figure 2 shows the apparatus.

Figure 2

What temperature would you expect the thermometer to show?

Tick (\checkmark) one box.

O°C	
10 °C	
50 °C	
100 °C	

(1)

(g)	Describe how the process of distillation shown in Figure 2 produces pure water from salt solution.

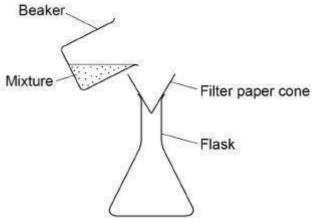
Page 14 of 38

					(4 (Total 13 marks
Q 7.					
	This	question is about atomic stru	ucture.		
	(a)	Atoms contain subatomic p	particles.		
		The table below shows pro	pperties of two subat	omic particles.	
		Complete the table.			
		Name of particle	Relative mass	Relative charge	
		neutron			
				+1	
			1		(2
	An el	ement X has two isotopes.			
	The is	sotopes have different mass	numbers.		
	(b)	Define mass number.			
	(2)	NA/less in the control of the contro	:#*********************	-t	(1
	(c)	Why is the mass number d	merent in the two iso	Diopes?	
					(1
	(d)	The model of the atom cha	inged as new evider	nce was discovered.	
		The plum pudding model s charge with electrons emb		tom was a ball of positive	
		Evidence from the alpha pa	article scattering exi	periment led to a change	in the

Q8.

	Explain how.			-
				-
				-
				-
				_
				(4) (Total 8 marks)
This q	uestion is about mixtures.			
(a)	Substances are separated from	a mixture using diffe	rent methods.	
	Draw one line from each substa separation.	ance and mixture to th	ne best method of	
	Substance and mixture		Method of separation	า
			Chromatography	
	Ethanol from ethanol and water		Crystallisation	
	Salt from sea water		Electrolysis	
	The different colours in black ink		Filtration	
			Fractional distillation	n
(b)	A student filters a mixture. Figu	re		(3)

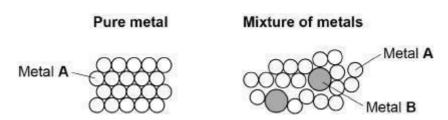
1 shows the apparatus.


Figure 1

(c)

(1)

(2)

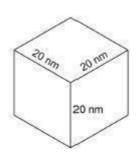


Suggest one imp	provement to the a	apparatus.		
				· · · · · · · · · · · · · · · · · · ·
Complete the se	ntences. Choose			
answers from the	e box.			
condense	evaporate	freeze	melt	solidify
In simple distillat	tion, the mixture is	heated to ma	ke the liquid	

The vapour is then cooled to make it ______.

Figure 2 shows the arrangement of atoms in a pure metal and in a mixture of metals.

Figure 2


(d)	Calculate the percentage of metal B atoms in the mixture of metals shown in Figure 2.

		Percentage of metal B atoms :	=	_ % (2)
(e)	What is a mixture	of metals called?		()
	Tick one box.			
	An alloy			
	A compound			
	A molecule			
	A polymer			
				(1)
(f)	Why is the mixture	e of metals in Figure 2 harder tha	an the pure metal? Tick	
	one box.			
	The atoms in the	mixture are different shapes.		
	The layers in the	mixture are distorted.		
	The layers in the	mixture slide more easily.		
	The mixture has	a giant structure.		
				(1)
(g)	A nanoparticle of	pure metal A is a cube. Each		
	side of the cube h	as a length of 20 nm. Figure 3		
	shows the cube.			

Figure 3

What is the volume of the nanoparticle?

Tick one box.	(triple only)	
20 nm3		
60 nm3		
400 nm3		
8000 nm3		
		(1)
		(Total 11 marks)

Q9.

This question is about the structure of the atom.

(a) Complete the sentences. Choose

answers from the box.

Each word may be used once, more than once, or not at all.

James Chadwick proved the existence of the _____

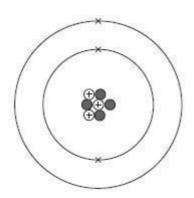
electron		ion	neutron
	nucleus	pro	oton
The centre of th	e atom is the		•
The two types of	of particle in the o	entre of the ato	m are the proton and
the			

Niels Bohr suggested particles orbit the centre of the atom. This type of particle

Page 19 of 38

The table be	elow shows information abou	ut two isotopes of element X.	
	Mass number	Percentage (%) abundance	
Isotope 1	63	70	
Isotope 2	65	30	
• •		ss (Ar) of element X using the equation one 1 + (mass number × percention 100	
		100	
Use t	he table above.		
Give	your answer to 1 decimal pl	ace.	
		<i>A</i> r =	
		Ar =	
(c) Sugg	est the identity of element X		
	est the identity of element X he periodic table.		
Use t	·		
Use t	he periodic table.		
Use t	he periodic table.		_
Use t	he periodic table. ent X is		
Use to Elem (d) The re	he periodic table. ent X is adius of an atom of element	X is 1.2 × 10−10 m	_
Use to Elem (d) The reference	he periodic table. ent X is adius of an atom of element	X is 1.2 × 10−10 m 1 om is 10000 the radius of the atom.	_

_ m	S =	Radius = _				
tal 10 mark	(Tota					
	om.	ls of the atom.	different mod	low represents	diagram belo	0. The
•	•			© +°		
E	D I	C		В	A	
	the atom? Tick	g model of the a	e plum pudd	gram shows th	_	(a)
	D E	D	С	В	one box.	
•	eloped from the alpha	atom develope	e model of the ment?	cattering experi	Which diag particle sca	(b)
	D E	D	С	В	А	
(k	Iting from Bohr's work? Tick	atom resulting	e model of th	gram shows th	Which diag	(c)
	D E	D	С	В	Α	
(of an atom.	e mass number	Define the	(d)


(e) Element X has two isotopes. Their mass numbers are 69 and 71 The percentage abundance of each isotope is:			(1)
60% of 69X 40% of 71X Estimate the relative atomic mass of element X. Tick one box. 69.5 Between 69.5 and 70.0 Between 70.0 and 70.5 > 70.5 (1) (f) Chadwick's experimental work on the atom led to a better understanding of isotopes. Explain how his work led to this understanding.	(e)	Element X has two isotopes. Their mass numbers are 69 and 71 The	
40% of 71X Estimate the relative atomic mass of element X. Tick one box. < 69.5 Between 69.5 and 70.0 Between 70.0 and 70.5 > 70.5 (1) (f) Chadwick's experimental work on the atom led to a better understanding of isotopes. Explain how his work led to this understanding. (3)		percentage abundance of each isotope is:	
Estimate the relative atomic mass of element X. Tick one box. < 69.5 Between 69.5 and 70.0 Between 70.0 and 70.5 > 70.5 (1) (f) Chadwick's experimental work on the atom led to a better understanding of isotopes. Explain how his work led to this understanding.		• 60% of 69X	
Tick one box. < 69.5 Between 69.5 and 70.0 Between 70.0 and 70.5 > 70.5 (1) Chadwick's experimental work on the atom led to a better understanding of isotopes. Explain how his work led to this understanding. (3)		• 40% of 71X	
69.5 Between 69.5 and 70.0 Between 70.0 and 70.5 > 70.5 (1) (f) Chadwick's experimental work on the atom led to a better understanding of isotopes. Explain how his work led to this understanding.		Estimate the relative atomic mass of element X.	
Between 69.5 and 70.0 Between 70.0 and 70.5 > 70.5 (1) (f) Chadwick's experimental work on the atom led to a better understanding of isotopes. Explain how his work led to this understanding.		Tick one box.	
Between 70.0 and 70.5 > 70.5 (1) (f) Chadwick's experimental work on the atom led to a better understanding of isotopes. Explain how his work led to this understanding.		< 69.5	
> 70.5 (1) (f) Chadwick's experimental work on the atom led to a better understanding of isotopes. Explain how his work led to this understanding.		Between 69.5 and 70.0	
(f) Chadwick's experimental work on the atom led to a better understanding of isotopes. Explain how his work led to this understanding.		Between 70.0 and 70.5	
(f) Chadwick's experimental work on the atom led to a better understanding of isotopes. Explain how his work led to this understanding.		> 70.5	
isotopes. Explain how his work led to this understanding.			(1)
(3)	(f)		f
		Explain how his work led to this understanding.	

Q11.

This question is about atomic structure.

The figure below represents the structure of a lithium atom.

Name the particl	e in the atom that has a positive charge.	
Name the particl	e in the atom that has the smallest mass.	
Complete the se	ntences.	
•	vers from the box.	
	3 4 7 10	
The mass number	er of the lithium atom is	
The number of n	eutrons in the lithium atom is	
What are lithium	atoms with different numbers of neutrons called? Tick	
(\checkmark) one box.		
Compounds		
lons		
Isotopes		
Molecules		

(e) Name the particle in the atom discovered by James Chadwick.

				(1)
(f)	An element has tw	o isotopes.		
	The table shows in	nformation about the iso	otopes.	
		Mass number	Percentage (%) abundance	
	Isotope 1	10	20	
	Isotope 2	11	80	
	Calculate the relat	ive atomic mass (<i>Ar</i>) of	the element.	
	Use the equation:			
$A_r = \frac{\text{(ma)}}{\text{(ma)}}$	ss number × perce		(mass number x percentage) of isotope 2
		10	0	
	Give your answer	to 1 decimal place.		
				_
				_
				_
		Deletive etemie mee	- (A)	_
		Helative atomic mas	s (<i>Ar</i>) =	(2)
(g)	The radius of an a	tom is 0.2 nm		
		1		
		nucleus is 10000 the ra	idius of the atom.	
	Calculate the rac Give your answer	lius of the nucleus. in standard form.		
	,			
				_
				_
				_
		Rac	lius =	nm
				(2) (Total 10 marks)

Page 24 of 38



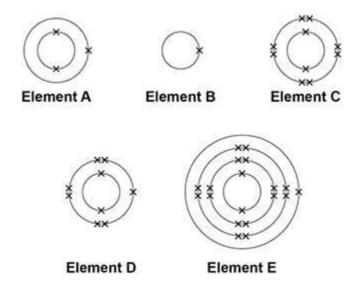
_	_
()1	ワ

How many ato	ms are present in one mole of fluorine atoms? Tick
/) one box.	
2.03 × 1026	
2.06 × 1023	
6.02 × 1023	
6.02 × 1026	
he plum pudo	ling model of the atom was replaced by the nuclear model.
he nuclear moxperiment.	odel was developed after the alpha particle scattering
ompare the p	olum pudding model with the nuclear model of the atom.
	

The table shows the mass numbers and percentage of each isotope.

(Total 8 marks)

	Isotope 1	Isotope 2	Isotope 3
Mass number	24	25	26
Percentage (%)	78.6	10.1	11.3


Calculate the relative atomic mass (Ar) of the element.

Give your answer to 3 significant fi	igures.	
		 -
Relati	ive atomic mass =	

Q13.

The electronic structure of the atoms of five elements are shown in the figure below.

The letters are not the symbols of the elements.

Choose the element to answer the question. Each element can be used once, more than once or not at all.

Use the periodic table to help you.

(a) Which element is hydrogen?

Tick one box.

Which element is a halogen? Tick one box. A B C D E Which element is a metal in the same group of the periodic table as element A? Tick one box. A B C D E Which element exists as single atoms? Tick one box. A B C D E (e) There are two isotopes of element A. Information about the two isotopes shown in the table below.
Which element is a metal in the same group of the periodic table as element A? Tick one box. A B C D E Which element exists as single atoms? Tick one box. A B C D E Which element exists as single atoms? Tick one box. A B C D D E (e) There are two isotopes of element A. Information about the two isotopes shown in the table below.
Which element is a metal in the same group of the periodic table as element A? Tick one box. A B C D E Which element exists as single atoms? Tick one box. A B C D E (e) There are two isotopes of element A. Information about the two isotopes shown in the table below.
Fick one box. A B C D E Which element exists as single atoms? Fick one box. A B C D E (e) There are two isotopes of element A. Information about the two isotopes shown in the table below.
A B C D E Which element exists as single atoms? Fick one box. A B C D E (e) There are two isotopes of element A. Information about the two isotopes shown in the table below.
(e) There are two isotopes of element A. Information about the two isotopes shown in the table below.
(e) There are two isotopes of element A. Information about the two isotopes shown in the table below.
(e) There are two isotopes of element A. Information about the two isotopes hown in the table below.
shown in the table below.
shown in the table below.
Mass number of the isotope 6 7
Percentage abundance 92.5 7.5

	Relative atomic mass =	
		(4)
		(Total 8 marks)
Q14.		
An a	tom of aluminium has the symbol 27 Al	
(a)	Give the number of protons, neutrons and electrons in this atom of aluminium.	
	Number of protons	
	Number of neutrons	
	Number of electrons	
		(3)
(b)	Why is aluminium positioned in Group 3 of the periodic table?	
		(1)
(c)	In the periodic table, the transition elements and Group 1 elements are metals.	

Some of the properties of two transition elements and two Group 1 elements are shown in the table below.

	Transition elements		Group 1 elements	
	Chromium	Iron	Sodium	Caesium
Melting point in °C	1857	1535	98	29
Formula of oxides	CrO Cr2O3 CrO2	FeO Fe2O3 Fe3O4	Na2O	Cs2O

Use your own knowledge and the data in chemical and physical properties of tran elements. (triple only)	

AQA Chemistry GCSE - A Simple Atomic Model	

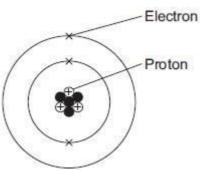
KnowledgeSet.co.uk

				(6) (Total 10 marks)
Q15. This	question is about m	ixtures and anal	vsis.	
(a)	Which two substa			
	Tick two boxes.			
	Air	8		
	Carbon dioxide	8		
	Graphite			
	Sodium Chloride	8		
	Steel	8		(-)
(b)	Draw one line fro	m each context to	o the correct meaning.	(2)
	Context		Meaning	
			A substance that has had nothing added to it	
	Pure substance in chemistry		A single element or a single compound	

Page 29 of 38

	A substance containing only atoms which have different numbers of protons
Pure substance in everyday life	A substance that can be separated by filtration
	A useful product made by mixing substances (2)
(c) What is the test for chlorine gas?	
Tick one box.	
A glowing splint relights	
A lighted splint gives a pop	
Damp litmus paper turns white	
Limewater turns milky	
(d) A student tested a motal ablavida	(1)
(d) A student tested a metal chloride brown precipitate formed.	solution with sodium hydroxide solution. A
What was the metal ion in the me	tal chloride solution?
Tick one box. (triple only)	
Calcium	_
Copper(II)	
Iron(II)	
Iron(III)	
	(1) (Total 6 marks)

Page 30 of 38



Q16.

There are eight elements in the second row (lithium to neon) of the periodic table.

(a) Figure 1 shows a lithium atom.

Figure 1

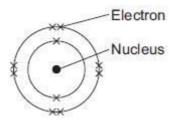
(i)	What is the mass number of the lithium atom in Figure 1?	
	Tick (\checkmark) one box.	
	3	
	4	
	7	
		(1)
(ii)	What is the charge of an electron?	
	Tick (√) one box.	
	-1	
	0	
	+1	
		(1)
(iii)	Protons are in the nucleus.	
	Which other sub-atomic particles are in the nucleus?	

Page 31 of 38

Tick (**√**) one box.

ions

(1)



	molecules neutrons			(1)
(b)	What is always different for al	toms of different elen	nents?	
	Tick (√) one box.			
	number of neutrons			
	number of protons			
	number of shells			
				(1)
(c)	Figure 2 shows the electron a	arrangements of three	e different atoms, X, Y and Z.	
	These atoms are from elemer periodic table.	nts in the second row	(lithium to neon) of the	
		Figure 2		
		*	Nucleus	
	Atom X	Atom Y	Atom Z	
	Which atom is from an eleme	nt in Group 3 of the p	periodic table?	
	Tick (√) one box.			
	Atom X	8		
	Atom Y			
	Atom Z	8 8		

(d) Figure 3 shows the electron arrangement of a different atom from an element in the second row of the periodic table.

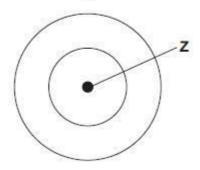
Figure 3

(i) Give the chemical symbol of this element.

(1)

(ii) Why is this element unreactive?

(Total 7 marks)


(1)

Q17.

There are eight elements in the second row (lithium to neon) of the periodic table.

(a) Figure 1 shows an atom with two energy levels (shells).

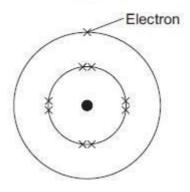
Figure 1

(i) Complete Figure 1 to show the electronic structure of a boron atom.

(1)

(1)

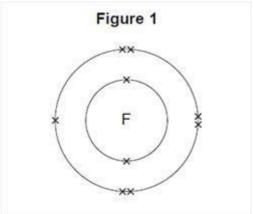
(ii) What does the central part labelled Z represent in Figure 1?


(iii) Name the sub-atomic particles in part Z of a boron atom. Give the relative charges of these sub-atomic particles.

(b)

	_
	- (3)
The electronic structure of a neon atom shown in Figure 2 is not correct.	

Figure 2


Explain what is wrong with the electronic structure shown in Figure 2.	
	(3)
	(Total 8 marks)

Q18.

This question is about fluorine.

(a) Figure 1 shows the arrangement of electrons in a fluorine atom.

		1550	
(i)	In which group of the period	dic table is fluorine?	
	G	Group	
(ii)	Complete the table below to relative masses.	show the particles in	n an atom and their
	Name of particle	Relative mass	3
	Proton		
	Neutron	1	
		Very small	
(iii)	Use the correct answer from alkalis	•	e the sentence.
	Atoms of fluorine with differ	ent numbers of neutr	ons are
	called		
Sodi	um reacts with fluorine to pro	duce sodium fluoride	o.
(i)	Complete the word equation	n for this reaction.	
	sodium +		
(ii)	Complete the sentence.		

Page 35 of 38

combined are called ______.

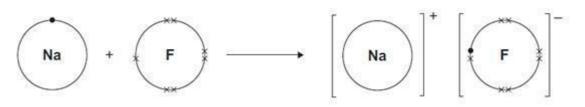
Substances in which atoms of two or more different elements are

(b)

chemically

(1)

(4)



)	The relative formula mass (Mr) of sodium fluoride is 42.			
	Use the correct answ	er from the box to	complete the sentence.	
	ion	mole	molecule	
	The relative formula	mass (<i>M</i> r), in gram	s, of sodium fluoride is one	ı.
	c	f the substance.		
				(1)

(iv) Figure 2 shows what happens to the electrons in the outer shells when a sodium atom reacts with a fluorine atom.

The dots (•) and crosses (×) represent electrons.

Figure 2

Use Figure 2 to help you answer this question.

Describe, as fully as you can, what happens when sodium reacts with fluorine to produce sodium fluoride.				

(v) Sodium fluoride is an ionic substance.

What are two properties of ionic substances?

Page 36 of 38

		Tick (✓) two boxes.	
		Dissolve in water	
		Gas at room temperature	
		High melting point	
		Low boiling point	
			(2) (Total 13 marks)
Q19.			
This	questi	on is about atoms, molecules and nanoparticles.	
(a)	Diffe	rent atoms have different numbers of sub-atomic particles.	
	(i)	An oxygen atom can be represented as 80 Explain	
		why the mass number of this atom is 16.	
		You should refer to the numbers of sub-atomic particles in the nucleus of the atom.	
			(2)
	(ii)	Explain why 6C and 6C are isotopes of carbon.	
		You should refer to the numbers of sub-atomic particles in the nucleus of each isotope.	
			

			(3)		
(b)		Hydrogen atoms and oxygen atoms chemically combine to produce water molecules.			
	(i)	Complete the figure below to show the arrangement of the outer she electrons of the hydrogen and oxygen atoms in a molecule of water.	II		
		Use dots (•) or crosses (×) to represent the electrons.			
		H O H			
			(2)		
	(ii)	Name the type of bonding in a molecule of water.			
			(1)		
	(iii)	Why does pure water not conduct electricity?			
(0)	Name		(1)		
(c)		oparticles of cobalt oxide can be used as catalysts in the production of ogen from water.			
	(i)	How does the size of a nanoparticle compare with the size of an atom? (triple only)			
			(1)		
	(ii)	Suggest one reason why 1 g of cobalt oxide nanoparticles is a better catalyst than 1g of cobalt oxide powder. (triple only)			
		(T	otal 11 marks)		