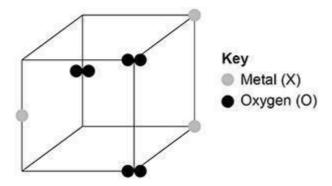


KnowledgeSet

## Questions are for both triple and combined science students unless indicated in the question

| This | question is about elements, compounds and mixtures.                     |     |
|------|-------------------------------------------------------------------------|-----|
| (a)  | Substance A contains only one type of atom.                             |     |
|      | Substance A does not conduct electricity. Which                         |     |
|      | type of substance is A?                                                 |     |
|      | Tick (√) one box.                                                       |     |
|      | Compound                                                                |     |
|      | Metallic element                                                        |     |
|      | Mixture                                                                 |     |
|      | Non-metallic element                                                    |     |
|      |                                                                         | (1) |
| (b)  | Substance B contains two types of atoms.                                |     |
|      | The atoms are chemically combined together in fixed proportions.        |     |
|      | Which type of substance is B?                                           |     |
|      | Tick (√) one box.                                                       |     |
|      | Compound                                                                |     |
|      | Metallic element                                                        |     |
|      | Mixture                                                                 |     |
|      | Non-metallic element                                                    |     |
|      |                                                                         | (1) |
| (c)  | What is the name of the elements in Group 0 of the periodic table? Tick |     |


 $(\checkmark)$  one box.

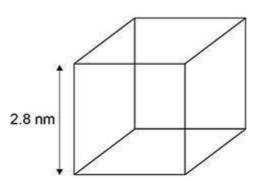


|     | Alkali metals                                            |                        |  |
|-----|----------------------------------------------------------|------------------------|--|
|     | Halogens                                                 |                        |  |
|     | Noble gases                                              |                        |  |
|     | Transition metals                                        |                        |  |
| (d) | Which statement about the elements in Gr                 | oup 0 is correct? Tick |  |
|     | $(\checkmark)$ one box.                                  |                        |  |
|     | All elements in the group are very reactive.             |                        |  |
|     | All elements in the group form negative ions.            |                        |  |
|     | The boiling points increase down the group.              |                        |  |
|     | The relative atomic masses (Ar) decrease down the group. |                        |  |
| (e) | Neon is in Group 0.                                      |                        |  |
|     | What type of particles are in a sample of n              | eon?                   |  |
|     | Tick $(\checkmark)$ one box.                             |                        |  |
|     | Atoms                                                    |                        |  |
|     | lons                                                     |                        |  |
|     | Molecules                                                | 0 9                    |  |
|     |                                                          |                        |  |

Figure 1






Determine the empirical formula of this oxide.

Empirical formula = XO\_\_\_\_ (1)

A nanoparticle of a metallic element is a cube.

Figure 2 shows a diagram of the nanoparticle.

Figure 2



(g) The surface area of a cube is given by the equation:

surface area = (length of side) $2 \times 6$ 

Calculate the surface area of the cube in Figure 2.

Give your answer to 2 significant figures. (triple only)

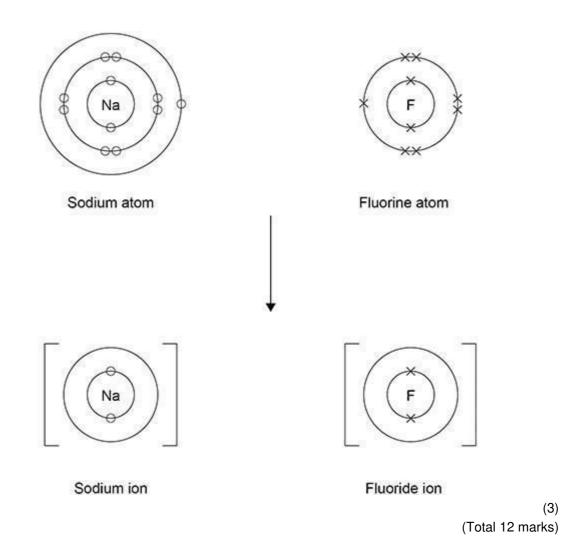
Q2.



|      | S                                       | urface area (2 significant f                         | igures) =                  | nm2<br>(3)       |
|------|-----------------------------------------|------------------------------------------------------|----------------------------|------------------|
| (h)  | Fine and seeres n                       | artialas of the motallic clar                        | nont are also aubos        | (0)              |
| (h)  | rine and coarse p                       | articles of the metallic eler                        | nent are also cubes.       |                  |
|      | The length of a fin coarse particle cul | e particle cube is 10 times<br>be.                   | smaller than the length of | fa               |
|      |                                         | face area to volume ratio of the coarse particle cub |                            |                  |
|      | Tick $(\checkmark)$ one box.            | (triple only)                                        |                            |                  |
|      | Both surface area                       | a to volume ratios are the s                         | same.                      |                  |
|      | The surface area times greater.         | to volume ratio of the fine                          | particle is 10             |                  |
|      | The surface area times smaller.         | to volume ratio of the fine                          | particle is 10             |                  |
|      |                                         |                                                      |                            | (1)              |
|      |                                         |                                                      |                            | (Total 10 marks) |
|      |                                         |                                                      |                            |                  |
| This | question is about G                     | roup 1 elements.                                     |                            |                  |
| (a)  | Complete Table 1                        | to show the electronic stru                          | acture of a potassium atom | 1.               |
|      |                                         | Table 1                                              |                            |                  |
|      | Atom                                    | Number of electrons                                  | Electronic structure       |                  |
|      | Sodium                                  | 11                                                   | 2,8,1                      |                  |
|      | Potassium                               | 19                                                   |                            |                  |
|      |                                         |                                                      |                            | (1)              |
| (b)  | Why do Group 1 e                        | lements have similar chen                            | nical properties? Tick     |                  |
|      | $(\checkmark)$ one box.                 |                                                      |                            |                  |
|      | They have the sa electron shells.       | me number of                                         |                            |                  |
|      | They have the sa shell electrons.       | me number of outer                                   | 3                          |                  |
|      | They have two eleshell.                 | ectrons in the first                                 |                            |                  |

Page 4 of 36




| (c) What is the             | type of bonding in sodium?                                                      |                                    |
|-----------------------------|---------------------------------------------------------------------------------|------------------------------------|
| Tick (√) one                | e box.                                                                          |                                    |
| Covalent                    |                                                                                 |                                    |
| Ionic                       |                                                                                 |                                    |
| Metallic                    |                                                                                 |                                    |
| Table 2 shows obs<br>water. |                                                                                 | potassium and rubidium react with  |
|                             | Table 2                                                                         |                                    |
| Element                     | Observations                                                                    |                                    |
| Lithium                     | Bubbles slowly<br>Floats<br>Moves slowly                                        |                                    |
| Sodium                      | 12                                                                              |                                    |
| Potassium                   | Bubbles very quick<br>Melts into a ball<br>Floats<br>Moves very quickl<br>Flame |                                    |
| Rubidium                    | Sinks<br>Melts into a ball<br>Explodes with a flar                              | ne                                 |
|                             | servations you could make whe                                                   | en sodium reacts with water. Write |
| (e) How does the            | ne reactivity of the elements cha                                               | ange going down Group 1?           |
|                             |                                                                                 |                                    |
|                             |                                                                                 |                                    |



| reactivity going down Group 1.                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                        |
| 2                                                                                                                        |
|                                                                                                                          |
| Which gas is produced when Group 1 elements react with water? Tick                                                       |
| $(\checkmark)$ one box.                                                                                                  |
| Carbon dioxide                                                                                                           |
| Hydrogen                                                                                                                 |
| Nitrogen                                                                                                                 |
| Oxygen                                                                                                                   |
|                                                                                                                          |
| Sodium fluoride is an ionic compound.                                                                                    |
| The diagram below shows dot and cross diagrams for a sodium atom and a fluorine atom.                                    |
| Complete the diagram below to show what happens when a sodium atom and a fluorine atom react to produce sodium fluoride. |
| You should:                                                                                                              |
| complete the electronic structures of the sodium ion and the fluoride ion                                                |

give the charges on the sodium ion and the fluoride ion.





Q3.

This question is about atomic structure and the periodic table.

Gallium (Ga) is an element that has two isotopes.

(a) Give the meaning of 'isotopes'.

You should answer in terms of subatomic particles.

(2)

(b) The table below shows the mass numbers and percentage abundances of the isotopes of gallium.

| Mass | Percentage abundance |
|------|----------------------|



| number                                             | (%) |  |  |  |  |
|----------------------------------------------------|-----|--|--|--|--|
| 69                                                 | 60  |  |  |  |  |
| 71                                                 | 40  |  |  |  |  |
| Calculate the relative atomic mass (Ar) of callium |     |  |  |  |  |

|      | Calculate the relative atomic mass ( <i>A</i> r) of gallium.         |                   |     |
|------|----------------------------------------------------------------------|-------------------|-----|
|      | Give your answer to 1 decimal place.                                 |                   |     |
|      |                                                                      | _                 |     |
|      |                                                                      | <del>-</del><br>- |     |
|      | Relative atomic mass (1 decimal place) =                             | _                 | (2) |
| Gall | ium (Ga) is in Group 3 of the modern periodic table.                 |                   | ,   |
| (c)  | Give the numbers of electrons and neutrons in an atom of the isotope | <sup>69</sup> Ga  |     |
|      | Number of electrons                                                  |                   |     |
|      | Number of neutrons                                                   |                   | (2) |
| (d)  | What is the most likely formula of a gallium ion?                    |                   |     |
|      | Tick (√) one box.                                                    |                   |     |
|      | Ga+                                                                  |                   |     |
|      | Ga-                                                                  |                   |     |
|      | Ga3+                                                                 |                   |     |
|      | Ga3-                                                                 |                   |     |
|      |                                                                      |                   | (1) |

(e) Gallium was discovered six years after Mendeleev published his periodic table.

Give two reasons why the discovery of gallium helped Mendeleev's periodic table to become accepted.



|          |     | 1                                                                                 | _                     |
|----------|-----|-----------------------------------------------------------------------------------|-----------------------|
|          |     |                                                                                   |                       |
|          |     |                                                                                   | -                     |
|          |     | 2                                                                                 | _                     |
|          |     |                                                                                   | -                     |
|          |     |                                                                                   | (2)<br>(Total 9 marks |
|          |     |                                                                                   | (Total 9 Illains      |
| Q4.      |     |                                                                                   |                       |
| <u> </u> |     | question is about Group 1 elements.                                               |                       |
|          | (a) | Give two observations you could make when a small piece of potassium is to water. | added                 |
|          |     | 1                                                                                 |                       |
|          |     |                                                                                   | -                     |
|          |     |                                                                                   | -                     |
|          |     | 2                                                                                 | -                     |
|          |     |                                                                                   | -                     |
|          |     |                                                                                   | (2                    |
|          | (b) | Complete the equation for the reaction of potassium with water. You               |                       |
|          |     | should balance the equation.                                                      |                       |
|          |     |                                                                                   |                       |
|          |     | K + H2O→ +                                                                        | (2                    |
|          | ( ) |                                                                                   |                       |
|          | (c) | Explain why the reactivity of elements changes going down Group 1.                |                       |
|          |     |                                                                                   | -                     |
|          |     |                                                                                   | _                     |
|          |     |                                                                                   |                       |
|          |     |                                                                                   | -                     |
|          |     |                                                                                   | -                     |
|          |     |                                                                                   | -                     |
|          |     |                                                                                   | _                     |
|          |     |                                                                                   |                       |
|          |     |                                                                                   | -                     |
|          |     |                                                                                   | -                     |
|          |     |                                                                                   | _                     |
|          |     |                                                                                   | (4)                   |

Sodium reacts with oxygen to produce the ionic compound sodium oxide.

(4)



Oxygen is a Group 6 element.

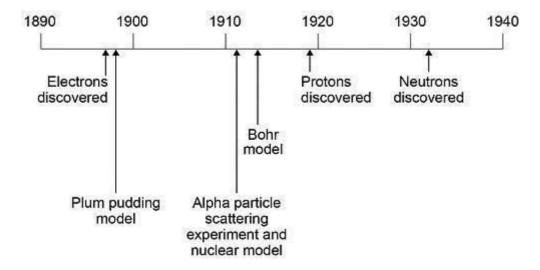
(d) Draw a dot and cross diagram to show what happens when atoms of sodium and oxygen react to produce sodium oxide.

Diagram

| Why is oxygen described as being reduced in the reaction between oxygen? | n sodium and |
|--------------------------------------------------------------------------|--------------|
| ,,                                                                       |              |
|                                                                          |              |
|                                                                          |              |
| Explain why sodium oxide has a high melting point.                       |              |
|                                                                          | <del></del>  |
|                                                                          |              |
|                                                                          |              |
|                                                                          |              |
|                                                                          |              |
|                                                                          |              |
|                                                                          |              |
|                                                                          | (Total 16 ma |

The diagram below shows a timeline of some important steps in the development of the

This question is about the development of scientific theories.


Q5.

model of the atom.

(3)

(2)





(a) The plum pudding model did not have a nucleus.

Describe three other differences between the nuclear model of the atom and the plum pudding model.

| 1 | <br> | <br> | <br> |
|---|------|------|------|
|   |      |      |      |
|   | <br> |      | <br> |
|   |      |      |      |
|   |      |      |      |
| 2 | <br> | <br> | <br> |
|   |      |      |      |
|   | <br> |      | <br> |
|   | <br> | <br> | <br> |
| 3 |      |      |      |
|   |      |      | <br> |
|   | <br> |      |      |
|   |      |      |      |
|   |      | <br> | <br> |

(b) Niels Bohr adapted the nuclear model.

| Describe the change that Bohr made to the nuclear model. |  |
|----------------------------------------------------------|--|
|                                                          |  |
|                                                          |  |
|                                                          |  |

(c) Mendeleev published his periodic table in 1869.

(1)

(Total 8 marks)



| Mendeleev arrange               | ed the elements in order of atomic weight.                                             |       |
|---------------------------------|----------------------------------------------------------------------------------------|-------|
| Mendeleev then rev              | versed the order of some pairs of elements.                                            |       |
|                                 | ed Mendeleev's reason for reversing the order was to<br>nts in order of atomic number. |       |
| Explain why the stu             | udent's suggestion cannot be correct.                                                  |       |
| Use the diagram at              | bove.                                                                                  |       |
|                                 |                                                                                        |       |
|                                 |                                                                                        |       |
|                                 |                                                                                        |       |
|                                 |                                                                                        |       |
|                                 |                                                                                        |       |
|                                 | ason why Mendeleev reversed the order of some pair                                     | rs of |
| Give the correct real elements. | ason why Mendeleev reversed the order of some pair                                     |       |

Q6.

This question is about the elements in Group 7 of the periodic table.

Table 1 shows the melting points and boiling points of some of the elements.

Table 1

| Element  | Melting point in °C | Boiling point in °C |
|----------|---------------------|---------------------|
| Fluorine | <del>-</del> 220    | -188                |
| Chlorine | -101                | <b>–35</b>          |
| Bromine  | _ <del></del>       | 59                  |

| <ul><li>(a) What is the state of bromine at 1</li></ul> | 100 | °C? |
|---------------------------------------------------------|-----|-----|
|---------------------------------------------------------|-----|-----|

Use Table 1.

Tick  $(\checkmark)$  one box.

Gas



|       | Liquid                                                                           |     |
|-------|----------------------------------------------------------------------------------|-----|
|       | Solid                                                                            |     |
| (h)   | What tomperature does oblering any condense at to form a liquid? Her             | (1) |
| (b)   | What temperature does chlorine gas condense at to form a liquid? Use  Table 1.   |     |
|       | Temperature = °C                                                                 |     |
|       | - Criperature – 0                                                                | (1) |
| (c)   | Complete the sentences.                                                          |     |
|       | Going down Group 7 the melting points                                            |     |
|       | This is because the size of the molecules increases so the intermolecular forces |     |
|       | ·                                                                                |     |
|       |                                                                                  | (2) |
| A tea | acher investigated the reaction of iron with chlorine.                           |     |
| The   | diagram below shows the apparatus used.                                          |     |
|       | Iron                                                                             |     |
| Ch    | lorine gas in> Excess chlorine                                                   |     |
|       | gas out                                                                          |     |
|       | Heat Glass tube                                                                  |     |
| (d)   | Why did the teacher do the investigation in a fume cupboard? Tick                |     |
|       | (√) one box.                                                                     |     |
|       | <u>⊘</u>                                                                         |     |
|       | Chlorine gas is coloured.                                                        |     |
|       | Chlorine gas is flammable.                                                       |     |
|       | Chlorine gas is toxic.                                                           |     |
|       |                                                                                  | (1) |
| (e)   | The word equation for the reaction is:                                           |     |

Page 13 of 36



iron + chlorine → iron chloride

Iron chloride is a solid.

The teacher weighed the glass tube and contents:

- before the reaction
- after the reaction.

What happened to the mass of the glass tube and contents during the reaction?

Give one reason for your answer.

The mass of the glass tube and contents \_\_\_\_\_

Reason \_\_\_\_\_

\_\_\_\_\_

The teacher repeated the investigation with bromine gas and with iodine gas.

Table 2 shows the results.

Table 2

| Element  | Observation                               |
|----------|-------------------------------------------|
| Chlorine | Iron burns vigorously with an orange glow |
| Bromine  | Iron burns with an orange glow            |
| lodine   | Iron slowly turns darker                  |

| ( | (f) | Fluorine | is abo | ve chlorin | e in ( | Group | 7. |
|---|-----|----------|--------|------------|--------|-------|----|
|   |     |          |        |            |        |       |    |

Predict what you would observe when fluorine gas reacts with iron.

Use Table 2.

\_\_\_\_\_

\_\_\_\_\_\_

(1)

(2)

(g) Balance the equation for the reaction between iron and bromine.

(1)

(h) Calculate the relative formula mass (Mr) of FeBr3

Relative atomic masses (Ar): Fe = 56 Br = 80

Page 14 of 36

Q7.



|                  |                                | Relative f                     | ormula mass ( <i>M</i> r) = |                       |
|------------------|--------------------------------|--------------------------------|-----------------------------|-----------------------|
|                  |                                |                                |                             | (2<br>(Total 11 marks |
| This question is | about the halo                 | ogens.                         |                             |                       |
| Table 1 shows t  | he melting poi                 | nts and boiling p              | points of some halogens.    |                       |
|                  |                                | Table 1                        |                             |                       |
| Element          | Melting po                     | oint in °C                     | Boiling point in °C         | 7                     |
| Fluorine         | -:                             | 220                            | -188                        |                       |
| Chlorine         | _                              | 101                            | <b>–</b> 35                 |                       |
| Bromine          |                                | <b>-</b> 7                     | 59                          |                       |
| (√) one b        |                                |                                |                             |                       |
| 3.0              | te at 0 °C                     | State at 10                    | 0 °C                        |                       |
| 3.0              | Gas                            | State at 10                    | 0 °C                        |                       |
| 5.0              |                                |                                | 0 °C                        |                       |
|                  | Gas                            | Gas                            | 0 °C                        |                       |
|                  | Gas                            | Gas<br>Liquid                  | 0 °C                        |                       |
|                  | Gas<br>Gas<br>Liquid           | Gas<br>Liquid<br>Gas           | 0 °C                        |                       |
|                  | Gas<br>Gas<br>Liquid<br>Liquid | Gas<br>Liquid<br>Gas<br>Liquid | 0 °C                        |                       |

Explain the trend in boiling points of the halogens shown in Table 1. (b)



| Why is it not correct to sa |                              |                                    |
|-----------------------------|------------------------------|------------------------------------|
| Why is it not correct to sa |                              |                                    |
|                             | ay that the boiling point of | f a single bromine                 |
|                             |                              |                                    |
| eacts with each of the hali | apparatus used.              | ırm.                               |
| ogen gas in —→              | Iron                         | Excess halogen gas out  Glass tube |
| Give one reason why this    | s experiment should be d     | one in a fume cupboard.            |
|                             |                              |                                    |
| Explain why the reactivity  | y of the halogens decreas    | ses going down the                 |



| A teacher investigated the reactior<br>above diagram. | n of iron with chlo | rine using the apparatus in the       |
|-------------------------------------------------------|---------------------|---------------------------------------|
| The word equation for the reaction                    | ı is:               |                                       |
| iron + chlor                                          | ine → iron chlori   | de                                    |
| The teacher weighed:                                  |                     |                                       |
| the glass tube                                        |                     |                                       |
| the glass tube and iron befo                          | re the reaction     |                                       |
| • the glass tube and iron chlo                        | ride after the rea  | ction.                                |
| Table 2 shows the teacher's result                    | S.                  |                                       |
| Table 2                                               |                     |                                       |
|                                                       | Mass in g           | 7                                     |
| Glass tube                                            | 51.56               |                                       |
| Glass tube and iron                                   | 56.04               |                                       |
| Glass tube and iron chloride                          | 64.56               |                                       |
| Calculate the simplest whole numb                     | per ratio of:       | _                                     |
| moles of iron atoms                                   | s : moles of chlor  | ine atoms                             |
| Determine the balanced equation t                     | for the reaction.   |                                       |
| Relative atomic masses (Ar):                          | CI = 35.5           | Fe = 56                               |
|                                                       |                     | · · · · · · · · · · · · · · · · · · · |
|                                                       |                     |                                       |
|                                                       |                     |                                       |
|                                                       |                     |                                       |
|                                                       |                     |                                       |
| Malas of iron atoms : malas of obli                   | orine atoms =       | ::                                    |

Page 17 of 36



Q8.

This question is about the periodic table.

In the 19th century, some scientists tried to classify the elements by arranging them in order of their atomic weights.

The figure below shows the periodic table Mendeleev produced in 1869.

His periodic table was more widely accepted than previous versions.

|          | Group<br>1 | Group<br>2 | Group<br>3 | Group<br>4 | Group<br>5 | Group<br>6 | Group<br>7 |
|----------|------------|------------|------------|------------|------------|------------|------------|
| Period 1 | н          |            |            |            |            |            |            |
| Period 2 | Li         | Ве         | В          | С          | N          | 0          | F          |
| Period 3 | Na         | Mg         | Al         | Si         | Р          | s          | Cl         |
| Period 4 | K<br>Cu    | Ca<br>Zn   | *          | Ti *       | V<br>As    | Cr<br>Se   | Mn<br>Br   |
| Period 5 | Rb<br>Ag   | Sr<br>Cd   | Y<br>In    | Zr<br>Sn   | Nb<br>Sb   | Mo<br>Te   | * 1        |

| (a) | The atomic weight of tellurium (Te) is 128 and that of iodine (I) is 127 Why did Mendeleev reverse the order of these two elements? |     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|-----|
| (h) | Mandala av left an accompany and with an actorial *                                                                                 | (1) |
| (b) | Mendeleev left spaces marked with an asterisk *                                                                                     |     |
|     | He left these spaces because he thought missing elements belonged there                                                             |     |
|     | Why did Mendeleev's periodic table become more widely accepted than previous versions?                                              |     |
|     |                                                                                                                                     |     |
|     |                                                                                                                                     |     |
|     |                                                                                                                                     |     |
|     |                                                                                                                                     |     |
|     |                                                                                                                                     |     |



|      |                                                                                                          | (3) |  |  |  |
|------|----------------------------------------------------------------------------------------------------------|-----|--|--|--|
| (c)  | Mendeleev arranged the elements in order of their atomic weight. What                                    |     |  |  |  |
|      | is the modern name for atomic weight?                                                                    |     |  |  |  |
|      | Tick (✓) one box.                                                                                        |     |  |  |  |
|      | Atomic number                                                                                            |     |  |  |  |
|      | Mass number                                                                                              |     |  |  |  |
|      | Relative atomic mass                                                                                     |     |  |  |  |
|      | Relative formula mass                                                                                    |     |  |  |  |
|      |                                                                                                          | (1) |  |  |  |
| (d)  | Complete the sentence.                                                                                   |     |  |  |  |
|      | In the modern periodic table, the elements are arranged in order of                                      |     |  |  |  |
|      |                                                                                                          | (4) |  |  |  |
| Ohla | vine indine and estatine are in Overus 7 of the median povincial stable                                  | (1) |  |  |  |
|      | rine, iodine and astatine are in Group 7 of the modern periodic table.                                   |     |  |  |  |
| (e)  | Astatine (At) is below iodine in Group 7.                                                                |     |  |  |  |
|      | Predict:                                                                                                 |     |  |  |  |
|      | <ul><li>the formula of an astatine molecule</li><li>the state of astatine at room temperature.</li></ul> |     |  |  |  |
|      | Formula of astatine molecule                                                                             |     |  |  |  |
|      | State at room temperature                                                                                |     |  |  |  |
|      |                                                                                                          | (2) |  |  |  |
| (f)  | Sodium is in Group 1 of the modern periodic table.                                                       |     |  |  |  |
|      | Describe what you would see when sodium reacts with chlorine.                                            |     |  |  |  |
|      |                                                                                                          |     |  |  |  |
|      |                                                                                                          |     |  |  |  |
|      |                                                                                                          |     |  |  |  |
|      |                                                                                                          |     |  |  |  |
|      |                                                                                                          | (2) |  |  |  |

Q9.



(Total 10 marks)

| Tho h | nalogens are elements  | s in Group 7                                         |     |
|-------|------------------------|------------------------------------------------------|-----|
|       |                        |                                                      |     |
| (a)   | Bromine is in Group    |                                                      |     |
|       | Give the number of     | electrons in the outer shell of a bromine atom.      |     |
|       |                        | <del></del>                                          | (1) |
| (b)   | Bromine reacts with    | hydrogen. The gas hydrogen bromide is produced. What | (1) |
|       | is the structure of hy | rdrogen bromide?                                     |     |
|       | Tick one box.          |                                                      |     |
|       | Giant covalent         |                                                      |     |
|       | Ionic lattice          |                                                      |     |
|       | Metallic structure     |                                                      |     |
|       | Small molecule         |                                                      |     |
|       |                        |                                                      | (1) |
| (c)   | What is the formula    | for fluorine gas?                                    |     |
|       | Tick one box.          |                                                      |     |
|       | F                      |                                                      |     |
|       | F2                     |                                                      |     |
|       | F2                     |                                                      |     |
|       | 2F                     |                                                      |     |
|       |                        |                                                      | (1) |

A student mixes solutions of halogens with solutions of their salts.

The table below shows the student's observations.



|                       | Potassium<br>chloride<br>(colourless) | Potassium<br>bromide<br>(colourless) | Potassium<br>iodide<br>(colourless) |
|-----------------------|---------------------------------------|--------------------------------------|-------------------------------------|
| Chlorine (colourless) |                                       | Solution turns orange                | Solution turns<br>brown             |
| Bromine (orange)      | No change                             |                                      | Solution turns<br>brown             |
| lodine<br>(brown)     | No change                             | No change                            |                                     |

| (d)  | Explain how the    | reactivity of the | halogens cha              | nges going down (   | Group 7. Use |     |
|------|--------------------|-------------------|---------------------------|---------------------|--------------|-----|
|      | the results in the | e table above.    |                           |                     |              |     |
|      |                    |                   |                           |                     |              |     |
|      |                    |                   |                           |                     |              |     |
|      |                    |                   |                           |                     |              |     |
|      |                    |                   |                           |                     |              |     |
|      |                    |                   |                           |                     |              |     |
| Α    |                    |                   |                           | a faran Marakana ak |              | (3) |
| A co | mpany uses cniori  | ne to produce tit | anium chiorid             | e from titanium dio | xide.        |     |
| (e)  | What is the relat  | ive formula mass  | s ( <i>M</i> r) of titani | um dioxide, TiO2?   | 1            |     |
|      | Relative atomic    | masses (Ar):      | O = 16                    | Ti = 48             |              |     |
|      | Tick one box.      |                   |                           |                     |              |     |
|      | 64                 |                   |                           |                     |              |     |
|      | 80                 |                   |                           |                     |              |     |
|      | 128                |                   |                           |                     |              |     |
|      | 768                |                   |                           |                     |              |     |
|      |                    |                   |                           |                     |              | (1) |

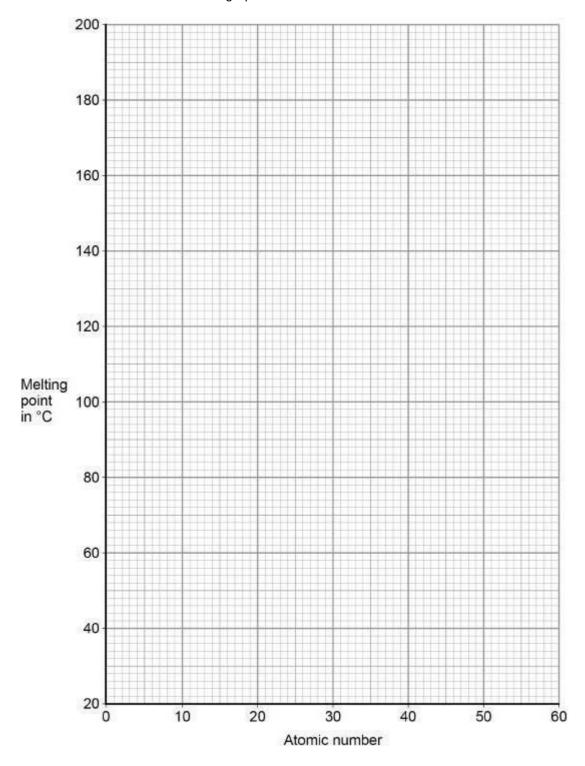
(f) The company calculates that 500 g of titanium dioxide should produce 1.2 kg of titanium chloride.



|            | However, the company finds that 500 g of titanium dioxide only produc of titanium chloride. | es 900 g                                                                   |
|------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|            | Calculate the percentage yield.                                                             |                                                                            |
|            |                                                                                             |                                                                            |
|            |                                                                                             |                                                                            |
|            |                                                                                             |                                                                            |
|            | Percentage yield =                                                                          | %                                                                          |
|            |                                                                                             | (Total 9 marks)                                                            |
| ) <u>.</u> |                                                                                             |                                                                            |
|            |                                                                                             |                                                                            |
| A tead     | cher burns sodium in oxygen.                                                                |                                                                            |
| (a)        | Complete the word equation for the reaction. sodium + oxygen $\rightarrow$                  | (1)                                                                        |
| (b)        | What is the name of this type of reaction?                                                  | (1)                                                                        |
|            | Tick one box.                                                                               |                                                                            |
|            | Decomposition                                                                               |                                                                            |
|            | Electrolysis                                                                                |                                                                            |
|            | Oxidation                                                                                   |                                                                            |
|            | Precipitation                                                                               | 40                                                                         |
| (c)        | The teacher dissolves the product of the reaction in water and adds universal indicator.    | (1)                                                                        |
|            | The universal indicator turns purple.                                                       |                                                                            |
|            | What is the pH value of the solution?                                                       |                                                                            |
|            | Tick one box.                                                                               |                                                                            |
|            | This can (a) (b)                                                                            | of titanium chloride.  Calculate the percentage yield.  Percentage yield = |

Page 22 of 36




| •           |
|-------------|
|             |
|             |
|             |
| <del></del> |
|             |

Page 23 of 36



| Lithium   | 3  | 181 |
|-----------|----|-----|
| Sodium    | 11 | 98  |
| Potassium | 19 | 63  |
| Rubidium  | 37 | Х   |
| Caesium   | 55 | 29  |

Plot the data from the table on the graph below.



Page 24 of 36



|      |                                                                          |               | (2)         |
|------|--------------------------------------------------------------------------|---------------|-------------|
| (h)  | Predict the melting point, X, of rubidium, atomic number 37 Use          |               |             |
|      | the graph above.                                                         |               |             |
|      | Melting point =                                                          | °C            |             |
|      |                                                                          | (Total 10 ma  | (1)<br>rks) |
| Q11. |                                                                          |               |             |
| This | question is about metals and metal compounds.                            |               |             |
| (a)  | Iron pyrites is an ionic compound.                                       |               |             |
|      | The diagram below shows a structure for iron pyrites.                    |               |             |
|      | Key<br>• Fe<br>• S                                                       |               |             |
|      | Determine the formula of iron pyrites.                                   |               |             |
|      | Use the diagram above.                                                   |               |             |
|      | 56<br>Fe                                                                 |               | (1)         |
| (b)  | An atom of iron is represented as <sup>26</sup> re                       |               |             |
|      | Give the number of protons, neutrons and electrons in this atom of iron. |               |             |
|      | Number of protons                                                        |               |             |
|      | Number of neutrons                                                       |               |             |
|      | Number of electrons                                                      |               |             |
| (c)  | Iron is a transition metal.                                              |               | (3)         |
|      | Sodium is a Group 1 metal.                                               |               |             |
|      | Give two differences between the properties of iron and sodium.          |               |             |
|      | 1.                                                                       | (triple only) |             |



| 2                                                                      |             |
|------------------------------------------------------------------------|-------------|
|                                                                        |             |
| is extracted from nickel oxide by reduction with carbon.               |             |
| Explain why carbon can be used to extract nickel from nickel oxide.    |             |
|                                                                        |             |
|                                                                        | _           |
| An equation for the reaction is: $NiO + C \longrightarrow Ni + CO$     |             |
| Calculate the percentage atom economy for the reaction to produce nick | æl.         |
| Relative atomic masses ( $Ar$ ): $C = 12$ $Ni = 59$                    |             |
| Relative formula mass ( $Mr$ ): NiO = 75                               |             |
| Give your answer to 3 significant figures. (triple only)               |             |
|                                                                        | _           |
|                                                                        | _           |
|                                                                        |             |
| Percentage atom economy =                                              | <br>%       |
|                                                                        | (Total 11 m |

Q12.

This question is about Group 7 elements.

Chlorine is more reactive than iodine.

(a) Name the products formed when chlorine solution reacts with potassium

Page 26 of 36



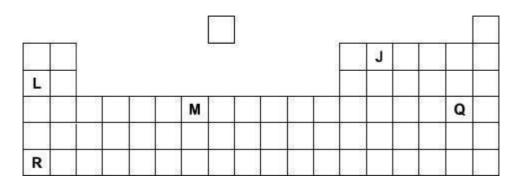
| Explain why chlorine is more reactive than iodine.               |  |
|------------------------------------------------------------------|--|
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
| Chlorine reacts with hydrogen to form hydrogen chloride. Explain |  |
| why hydrogen chloride is a gas at room temperature. Answer in    |  |
| terms of structure and bonding.                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |
|                                                                  |  |

(d) Bromine reacts with methane in sunlight.

The diagram below shows the displayed formulae for the reaction of bromine with methane.

The table below shows the bond energies and the overall energy change in the reaction.




|                  | С—Н | Br—Br | C—Br | H—Br | Overall<br>energy<br>change |
|------------------|-----|-------|------|------|-----------------------------|
| Energy in kJ/mol | 412 | 193   | Χ    | 366  | -51                         |

| Calculate the bond energy X for the C—Br bond. |                 |
|------------------------------------------------|-----------------|
| Jse the diagram and the table above.           |                 |
|                                                | _               |
|                                                |                 |
|                                                | -               |
|                                                | -               |
|                                                | -               |
|                                                | -               |
|                                                | -               |
|                                                | -               |
| Bond energy X = k.                             |                 |
|                                                | (4)             |
|                                                | Total 11 marks) |

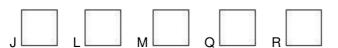

Q13.

Figure 1 shows an outline of the modern periodic table.

Figure 1



- $J,\,L,\,M,\,Q$  and R represent elements in the periodic table.
- (a) Which element has four electrons in its outer shell? Tick(√) one box.



Page 28 of 36



| Which two elements in Figure 1 are in the same period?              |  |
|---------------------------------------------------------------------|--|
| and                                                                 |  |
|                                                                     |  |
| Which element reacts with potassium to form an ionic compound? Tick |  |
| (✓) one box.                                                        |  |
| J L M Q R                                                           |  |
| Which element forms ions with different charges? Tick               |  |
| $(\checkmark)$ one box.                                             |  |
| J L M Q R                                                           |  |
| Which element has three electron shells?                            |  |
| Tick ( <b>√</b> ) one box.                                          |  |
| J L M Q R                                                           |  |
|                                                                     |  |
| In the 1860s scientists were trying to organise elements.           |  |
| Fig. 10 Oaks and health as his health and health and a 1005. The    |  |

Figure 2 shows the table published by John Newlands in 1865. The elements are arranged in order of their atomic weights.

Figure 2

| Н     | Li    | Be | В     | С  | N     | 0     |
|-------|-------|----|-------|----|-------|-------|
| F     | Na    | Mg | Al    | Si | Р     | S     |
| CI    | K     | Ca | Cr    | Ti | Mn    | Fe    |
| Co,Ni | Cu    | Zn | Υ     | In | As    | Se    |
| Br    | Br Rb |    | Ce,La | Zr | Di,Mo | Ro,Ru |
| Pd    | Ag    | Cd | U     | Sn | Sb    | Te    |



Figure 3 shows the periodic table published by Dmitri Mendeleev in 1869.

Figure 3

| H<br>Li |    | £1 |      | 14 |    |    |    |    | 9  |    | ė. |    |    |          |
|---------|----|----|------|----|----|----|----|----|----|----|----|----|----|----------|
|         |    | E  | Be . |    | В  |    | С  | ĺ  | N  | (  | 0  |    | F  |          |
| 1       | Na |    | Mg   |    | Al |    | Si |    | Р  |    | s  |    | CI |          |
| K       | Cu | Ca | Zn   | ?  | ?  | Ti | ?  | ٧  | As | Cr | Se | Mn | Br | Fe Co Ni |
| Rb      | Ag | Sr | Cd   | Y  | In | Zr | Sn | Nb | Sb | Мо | Те | ?  | Ĭ  | Ru Rh Pd |

Mendeleev's table became accepted by other scientists whereas Newlands' table was not.

Evaluate Newlands' and Mendeleev's tables.

You should include:

- a comparison of the tables
- reasons why Mendeleev's table was more acceptable.

Use Figure 2 and Figure 3 and your own knowledge.

(6)

(Total 11 marks)

Q14.

This question is about halogens and their compounds.

The table below shows the boiling points and properties of some of the elements in Group 7 of the periodic table.

| Element  | Boiling<br>point in °C | Colour in aqueous solution |  |  |  |  |
|----------|------------------------|----------------------------|--|--|--|--|
| Fluorine | -188                   | colourless                 |  |  |  |  |
| Chlorine | -35                    | pale green                 |  |  |  |  |
| Bromine  | Х                      | orange                     |  |  |  |  |
| lodine   | 184                    | brown                      |  |  |  |  |

| (a) | Why does iodine have a higher boiling point than chlorine? |
|-----|------------------------------------------------------------|
|     |                                                            |

Tick one box.

lodine is ionic and chlorine is covalent



|     | lodine is less reactive than chlorine                                                     |     |
|-----|-------------------------------------------------------------------------------------------|-----|
|     | The covalent bonds between iodine atoms are stronger                                      |     |
|     | The forces between iodine molecules are stronger                                          |     |
| (b) | Predict the boiling point of bromine.                                                     | (1) |
| (c) | A redox reaction takes place when aqueous chlorine is added to potassium iodide solution. | (1) |
|     | The equation for this reaction is:                                                        |     |
|     | $Cl2(aq) + 2KI(aq) \rightarrow l2 (aq) + 2KCI(aq)$                                        |     |
|     | Look at table above.                                                                      |     |
|     | What is the colour of the final solution in this reaction?                                |     |
|     | Tick one box.                                                                             |     |
|     | Brown                                                                                     |     |
|     | Orange                                                                                    |     |
|     | Pale green                                                                                |     |
|     | Colourless                                                                                |     |
|     |                                                                                           | (1) |
| (d) | What is the ionic equation for the reaction of chlorine with potassium iodide?            |     |
|     | Tick one box.                                                                             |     |
| 21- | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                      |     |
|     |                                                                                           |     |

Page 31 of 36

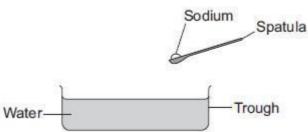


|     |     |               |                    |           |                |             |               |             | (1)           |
|-----|-----|---------------|--------------------|-----------|----------------|-------------|---------------|-------------|---------------|
|     | (e) | Why does      | potassium iodide   | e solutio | n conduct e    | lectricity? |               |             |               |
|     |     | Tick one b    | oox.               |           |                |             |               |             |               |
|     |     | It contains   | s a metal          |           |                | 2 2         |               |             |               |
|     |     | It contains   | electrons which    | can mo    | ove            |             |               |             |               |
|     |     | It contains   | ions which can     | move      |                |             |               |             |               |
|     |     | It contains   | water              |           |                | 8 9         |               |             |               |
|     |     |               |                    |           |                |             |               |             | (1)           |
|     | (f) | What are th   | ne products of ele | ectrolys  | ing potassiu   | m iodide s  | olution?      |             |               |
|     |     | Tick one b    | oox.               |           |                |             |               |             |               |
|     |     | Product at    | t cathode          | Produc    | ct at anode    |             |               |             |               |
|     |     | hydrogen      |                    | iodine    |                |             |               |             |               |
|     |     | hydrogen      |                    | oxygei    | า              |             |               |             |               |
|     |     | potassium     | 1                  | iodine    |                |             |               |             |               |
|     |     | potassium     | 1                  | oxygei    | า              |             |               |             |               |
|     |     |               |                    |           |                |             |               | (Total 6    | (1)<br>marks) |
| Q15 |     |               |                    |           |                |             |               |             |               |
|     |     | question is a | about elements a   | nd the p  | periodic table | e.          |               |             |               |
|     | (a) | Use the co    | rrect answers fro  | om the b  | oox to compl   | lete the se | ntences.      |             |               |
|     |     | atoms         | atomic weights     | prot      | on numbers     |             |               |             |               |
|     |     |               | and Mendeleev'     |           | dic tables sh  | ow the ele  | ments in orde | er of their |               |
|     |     |               | the discovery of p |           | and            |             | , the mod     | ern         |               |
|     |     | table show    | s the elements in  | n order   | of their       |             | ·             |             | (3)           |

Page 32 of 36



Figure 1


(b) Figure 1 shows the position of six elements in the modern periodic table.

|          |     |                                                          |                   |                |         |       | 3      | Н       | is a    |        |         |      |                 |       |       |    |     |    |      |     |
|----------|-----|----------------------------------------------------------|-------------------|----------------|---------|-------|--------|---------|---------|--------|---------|------|-----------------|-------|-------|----|-----|----|------|-----|
|          |     | 1                                                        |                   |                |         |       | è      |         | 9       |        |         |      | 4 6             |       |       | Î  | Ï   | -  |      |     |
| a        | Ŷ   |                                                          |                   |                |         |       |        |         |         |        |         |      | 9 3             |       |       |    | 163 | 8. | - 01 |     |
|          | -   | -                                                        | Т                 | T              | Т       |       |        | Fe      |         |        |         |      | 8 - 6           | -     |       | 9  |     | 8  | - 6  |     |
| 0        |     |                                                          |                   | -              | +       |       |        |         | 0 6     |        |         |      | 2-4             |       |       |    |     | -  | -    |     |
| <b>5</b> |     |                                                          | viii              | 75             | 15),    | -     | -      |         | (8 - 34 |        |         |      | <del>3 34</del> |       | ×     |    |     | 76 | 5.0  |     |
|          | (i) | )                                                        | Wh                | ch or          | ne of   | f the | se s   | ix ele  | ment    | s has  | the I   | owes | t boil          | ing p | oint? |    |     |    |      |     |
|          |     |                                                          |                   |                |         |       |        | _       |         |        |         |      |                 |       |       |    |     | _  |      | (1) |
|          | (ii | i <b>\</b>                                               | Con               | nplete         | tho     | 2 501 | ntanc  | `A      |         |        |         |      |                 |       |       |    |     |    |      | (1) |
|          | ("  | )                                                        |                   |                |         |       |        |         | um (l   | ∃h) is | in G    | roup |                 |       |       |    |     |    |      |     |
|          |     |                                                          |                   | io po          | i iodi  | io ta | 5.0, . | abiai   | u (1    | 10) 10 | , III G | ГОЦР |                 |       |       | ٠. |     |    |      | (1) |
|          | (ii | iii) Which of these three elements is the most reactive? |                   |                |         |       |        |         |         |        |         |      |                 |       |       |    |     |    |      |     |
|          |     |                                                          | Tick (✔) one box. |                |         |       |        |         |         |        |         |      |                 |       |       |    |     |    |      |     |
|          |     |                                                          | Lith              | nium           | (Li)    |       |        |         | 8       | 85     |         |      |                 |       |       |    |     |    |      |     |
|          |     |                                                          | So                | dium           | (Na)    | )     |        |         | 8       | 89     |         |      |                 |       |       |    |     |    |      |     |
|          |     |                                                          | Potassium (K)     |                |         |       |        |         |         |        |         |      |                 |       |       |    |     |    |      |     |
|          |     |                                                          | 10                | assic          | ו) וווג | ix)   |        |         | 8       | 8      |         |      |                 |       |       |    |     |    |      | (1) |
|          | (iv | v)                                                       | Wh                | ich tv         | vo st   | tate  | ment   | s are   | corre   | ect?   |         |      |                 |       |       |    |     |    |      | (') |
|          | (.  | • ,                                                      |                   |                |         |       |        | 0 4.0   | 00111   |        |         |      |                 |       |       |    |     |    |      |     |
|          |     |                                                          |                   | k ( <b>√</b> ) |         |       |        |         |         |        |         |      |                 |       |       |    |     |    |      |     |
|          |     |                                                          |                   | n has<br>assiu |         | ighe  | r der  | nsity 1 | han     |        |         |      | $\perp$         |       |       |    |     |    |      |     |
|          |     |                                                          | Iro               | n is s         | ofter   | tha   | n po   | tassiı  | ım. Ir  | on     |         |      |                 |       |       |    |     |    |      |     |
|          |     |                                                          | rea               | cts v          | igorc   | ousl  | y witl | h wat   | er.     |        |         |      |                 |       |       |    |     |    |      |     |
|          |     |                                                          |                   |                |         | ns t  | hat h  | nave (  | differe | ent    |         |      |                 |       |       |    |     |    |      |     |
|          |     |                                                          | cha               | arges          | •       |       |        |         |         |        |         |      |                 |       |       |    |     |    |      | (0) |
|          |     |                                                          |                   |                |         |       |        |         |         |        |         |      |                 |       |       |    |     |    |      | (2) |

(c) Figure 2 shows sodium being put into water.



## Figure 2



|        | Desc   | cribe three observations that can be seen when sodium is put into wat                                                 | er.                    |
|--------|--------|-----------------------------------------------------------------------------------------------------------------------|------------------------|
|        | 1.     |                                                                                                                       |                        |
|        |        |                                                                                                                       | -                      |
|        | 2.     |                                                                                                                       | -                      |
|        |        |                                                                                                                       | -                      |
|        | 3.     |                                                                                                                       |                        |
|        |        |                                                                                                                       | -                      |
|        |        |                                                                                                                       | (3)<br>Total 11 marks) |
| This ( | questi | on is about elements and the periodic table.                                                                          |                        |
| (a)    | New    | lands and Mendeleev both produced early versions of the periodic tab                                                  | ole.                   |
|        | (i)    | Complete the sentence.                                                                                                |                        |
|        |        | In their periodic tables, Newlands and Mendeleev arranged the elements in                                             |                        |
|        |        | order of                                                                                                              | (1)                    |
|        | (ii)   | Name the particle that allowed the elements to be arranged in order their atomic number in the modern periodic table. | of                     |
|        |        |                                                                                                                       | (1)                    |

(b) The diagram below shows the position of nine elements in the modern periodic table.

Q16.



|    |                                                                                                                                                                                    |     |                            |        |       |        |         |        |      |                |       |               |       |       |        | 8              |     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------|--------|-------|--------|---------|--------|------|----------------|-------|---------------|-------|-------|--------|----------------|-----|
| Li |                                                                                                                                                                                    |     |                            |        |       |        |         |        |      |                |       |               |       |       |        | F              |     |
| Na |                                                                                                                                                                                    |     |                            |        |       |        |         |        |      |                |       |               |       |       |        | CI             |     |
| K  |                                                                                                                                                                                    |     | 15                         |        |       |        | is<br>r |        |      | Cu             | i.    |               |       |       |        | Br             |     |
| Rb |                                                                                                                                                                                    |     |                            | Ka - 1 |       |        |         |        |      |                |       | 4             |       |       |        | 1              |     |
|    | (i                                                                                                                                                                                 | )   | Which<br>boiling           |        |       | e nine | e elen  | nents  | shov | wn in          | the d | iagra         | m ab  | ove h | as the | e lowes        |     |
|    | <ul> <li>(ii) Copper and potassium have different melting points and boiling points.</li> <li>Give one other difference between the properties of copper and potassium.</li> </ul> |     |                            |        |       |        |         |        |      |                |       |               |       |       | (1)    |                |     |
|    | (i                                                                                                                                                                                 | ii) | Explai<br>from I<br>iodine | ithiun | y the | react  | ivity c | of the | elem | nents<br>es go | incre | ases<br>own ( | going | g dow | n Gro  | oup 1 orine to | (1) |
|    |                                                                                                                                                                                    |     |                            |        |       |        |         |        |      |                |       |               |       |       |        |                |     |

(4)



(Total 8 marks)