

AQA Chemistry GCSE - The Periodic Table

KnowledgeSet

Mark schemes

Q1.	(a)	non-metallic element	1	
	(b)	compound	1	
	(c)	noble gases	1	
	(d)	the boiling points increase down the group	1	
	(e)	atoms	1	
	(f)	XO2	1	
	(g)	(2.8)2 × 6	1	
		= 47.04	1	
		= 47 (nm2) allow an answer correct to 2 significant figures resulting from an incorrect attempt at the calculation	1	
	(h)	the surface area to volume ratio of the fine particle is 10 times greater	1 [1	0]
Q2.				
	(a)	2,8,8,1	1	
	(b)	they have the same number of outer shell electrons	1	
	(c)	metallic	1	
	(d)	 any two from: bubbles (very) quickly melts (into a ball) 		

- floats
- moves (very) quickly
 allow flame

2

[12]

(e) (reactivity) increases (down the group) 1 any two from: (f) increasing speed of movement increasing rate of bubble production • doesn't melt \rightarrow melts • no flame \rightarrow flame • or $\textit{flame} \rightarrow \textit{explosion}$ 2 hydrogen (g) 1 (h) sodium ion structure 2,8 1 fluoride ion structure 2,8 allow any combination of circles, dots, crosses or e(–) 1 + charge on sodium ion and - charge on fluoride ion an answer of Na fluoride ion sodium ion scores 3 marks 1 Q3. (a) (atoms with the) same number of protons allow atoms with the same atomic number allow atoms of the same element ignore the same number of electrons 1 (but with) different numbers of neutrons ignore (but with) different mass numbers

KnowledgeSet

		1	
(b)	$(A_r =) \frac{(69 \times 60) + (71 \times 40)}{100}$	1	
	= 69.8	1	
(c)	(number of electrons) = 31	1	
	(number of neutrons) = 38	I	
(d)	Ga3+	1	
(e)	(gallium) fitted in a gap (Mendeleev had left)	1	
(0)		1	
	(gallium's) properties were predicted correctly (by Mendeleev) allow (gallium's) properties matched the rest of the group	1	[9]
Q4. (a)	any two from: • (potassium) floats • (potassium) melts • (potassium) moves around • potassium becomes smaller <i>allow potassium disappears</i> • (lilac) flame • effervescence <i>allow fizzing</i>	2	
(b)	2K + 2H2O → 2KOH + H2 allow multiples allow 1 mark for KOH and H2	2	
(c)	reactivity increases (going down the group)	1	
	 (because) the outer electron / shell is further from the nucleus allow (because) there are more shells allow (because) the atoms get larger (so) there is less attraction between the nucleus and the outer electron / shell 	1	

AQA Chemistry GCSE - The Periodic Table

	allow (so) there is the nucleus	more shielding from	
	do not accept inco	rrect attractions	1
	(so) the atom loses an electron	more easily	1
(d)	(dot and cross diagram to show use of outer shells	r) sodium atom and oxygen at <i>only</i>	om <i>allow</i> 1
	two sodium atoms to one oxyge allow two sodium i	en atom ions to one oxide ion	1
	(to produce) sodium ion with a	+ charge	1
	(to produce) oxide ion with a 2-	- charge	1
		××× ×××	
	↓	2-	Image: Way of the second se
	scores 4 marks		
(e)	(oxygen) gains electrons		1

(f) giant structure

allow (giant ionic) lattice

(with) strong (electrostatic) forces of attraction between (oppositely charged) ions

1

1

Q5.

(so) large amounts of energy are needed to break the bonds / forces allow (so) large amounts of energy are needed to separate the ions

[16]

1

(a)	any thi	ree from: (nuclear model)	
	•	mostly empty space allow the plum pudding model has no	
		empty space	
		allow the plum pudding model is solid	
	•	the positive charge is (all) in the nucleus	
		allow in the plum pudding model the atom is a ball of positive charge (with embedded electrons) do not accept reference to protons	
	•	the mass is concentrated in the nucleus	
		allow in the plum pudding model the	
		mass is spread out do not accept reference to neutrons	
	•	the electrons and the nucleus are separate	
		allow in the plum pudding model the electrons are embedded	
		allow in the nuclear model the electrons are in orbits	
			3
(b)	electro	ns orbit the nucleus	
		do not accept reference to protons /	
		allow electrons are in energy levels around the nucleus	
		or allow electrons are in shells around the	
		nucleus	1
			1
	electro	ons are at specific distances from the nucleus	1
(c)	atomic	number is the number of protons	1
		aratana wara nat diagovarad until latar	
	(anu) (ianore electrons / neutrons were not	
		discovered until later	
			1

 $(d) \quad \ \ \text{so their properties matched the rest of the group}$

			allow converse	1	[8]
Q6.	(a)	gas		1	
	(b)	-35 (°C)	allow any value between -35 °C and -100 °C	1	
	(c)	increase		1	
		increase	allow become stronger	1	
	(d)	chlorine gas	is toxic	1	
	(e)	increased		1	
		chlorine (ato or	oms) are now part of the solid (iron chloride)		
		the mass of	the chlorine (atoms) is now also measured	1	
	(f)	burns very vi	gorously allow burns violently allow brighter (orange) glow allow (orange) flame allow explodes	1	
	(g)	2 Fe + 3 Br2	$2 \rightarrow 2 \text{ FeBr3}$ allow multiples	1	
	(h)	56+(3×80)		1	
		= 296	ignore units	1	[11]
Q7.	(a)	liquid g	as	1	

(b)	(boiling point) increases (down the table / group)	1
	(because) the relative formula / molecular mass increases or (because) the size of the molecule increases	1
	(so) the intermolecular forces increase (in strength) allow (so) the forces between molecules increase (in strength)	1
	 (so) more energy is needed to overcome the intermolecular forces allow (so) more energy is needed to separate the molecules do not accept a reference to breaking bonds unless specifically between molecules 	1
(c)	boiling point is a bulk property allow boiling point is related to intermolecular forces (so more than one molecule is involved)	1
(d)	the gas / halogen is toxic allow the gas / halogen is poisonous / harmful allow to prevent inhalation of the gas / halogen ignore deadly / lethal	1
(e)	(going down the group) the outer electrons / shell become further from the nucleus allow energy level for shell throughout allow the atoms become larger allow the number of shells increases ignore the number of outer shells increases	1
	 (so) the nucleus has less attraction for the outer electrons / shell allow (so) the nucleus has less attraction for the incoming electron allow (so) increased shielding between the nucleus and the outer electrons / shell allow (so) increased shielding between the nucleus and the incoming electron 	1

	(so) an elec	stron is gained less easily		
	(50) all elec	and is gained less easily	1	
(£)	4.40 (
(1)	4.48 (g Iron)	and 8.52 (g chlorine)	1	
	(moles Fe =	$\frac{4.48}{56} = 0.08$		
	(allow correct calculation using		
		incorrectly calculated mass of iron		
			1	
		8.52		
	(moles CI =	^{35.5} =) 0.24		
	Υ.	allow correct calculation using		
		incorrectly calculated mass of chlorine		
		8.52		
		allow (moles $Cl2 = \frac{71}{2} = 0.12$		
			1	
	(Fe : Cl = 0.	.08 : 0.24 =) 1 : 3		
		allow correct calculation using		
		incorrectly calculated moles of iron and		
		/ or chlorine		
	2 Fe + 3 Cl2	$2 \rightarrow 2 \text{ FeCl}3$		
		allow multiples / fractions		
		allow a correctly balanced equation		
		including Fe and Cl2 from an incorrect		
		ratio of Fe : Cl		
		allow 1 mark for Fe and Cl2 (reactants) and EeCl3 (product)		
		or		
		allow 1 mark for Fe and Cl2 (reactants)		
		and a formula for iron chloride correctly		
		derived from an incorrect ratio of Fe : Ci (product)		
		(p. 6466)	2	
				[16]

Q8. (a)

ignore reference to atomic structure ignore references to Cr, Mn and Mo

any one from:

- so elements / iodine / tellurium were in groups with similar properties
- iodine has similar properties to Br / Cl / F / Group 7
 allow corresponding argument in terms
 of tellurium
- iodine has different properties to Se / S / O / Group 6 allow corresponding argument in terms

		of tellurium	1	
	(b)	ignore reference to atomic structure		
		Mendeleev had predicted properties of missing elements	4	
		elements were discovered (that filled the spaces / gaps)	1	
		properties (of these elements) matched Mendeleev's predictions <i>allow</i> <i>atomic weights (of these</i> <i>elements) fitted in the spaces / gaps</i>	1	
		if no other mark awarded, allow 1 mark for in previous versions of the periodic table the pattern of similar properties broke down	1	
	(c)	relative atomic mass	1	
	(d)	(increasing) atomic / proton number ignore (increasing) electron number do not accept relative atomic / proton number	1	
	(e)	(formula) At2 ignore incorrect state symbol	1	
		(state) solid allow (s) ignore s	1	
	(f)	any two from: • flame <i>allow burns</i> • (white) solid forms <i>allow (white) smoke forms</i> • colour of gas / chlorine disappears / fades	2	[10]
Q9.	()			
	(a)	7	1	
	(b)	small molecule	1	

[9]

1

(c)) F2	1
(d) the reactivity decreases (going down Group 7) allow the reactivity decreases from chlorine to iodine	1
	(because) chlorine displaces bromine and iodine allow (because) chlorine has two reactions allow (because) neither bromine nor iodine can displace chlorine	1
	(and) bromine displaces iodine or iodine does not react allow (and) bromine has one reaction or iodine has no reactions allow (and) iodine cannot displace bromine	1
(e) 80	1
(f)	(1.2 kg =) 1200 (g) or (900 g =) 0.9 (kg)	1
	$(\frac{900}{1200} \times 100) = 75(\%)$	
	or	
	$\left(\frac{0.5}{1.2} \times 100\right) = 75(\%)$	
	(<u>900</u> (<u>900</u> <u>incorrect attempt at</u> <u>conversion of 1.2</u>	
	or $\left(\frac{\text{conversion of 900}}{1.2} \times 100\right)$	1
	an answer of 75 (%) scores 2 marks	ı
Q10. (a) sodium oxide	
	allow Na2O	

KnowledgeSet

1

	(h)	avidation			
	(d)	oxidation		1	
	(c)	13		1	
	(d)	sodium hydi	roxide	1	
	(e)	OH-			
	(f)	(volume =) <mark>250</mark> or 1/4	I	
		or 0.25 (dm	3)	1	
		or			
		(mass per or 0.04 (g)	$cm^3 = \frac{40}{1000} (g)$		
		$(\frac{250}{1000} \times 40)$) =) 10 (g)		
			an answer of 10 (g) scores 2 marks	1	
	(g)	all points co	rrect allow a tolerance of ±½ a small square allow 1 mark for 3 points correct		
			ignore any attempt at a line of best fit	2	
	(h)	39 °C	allow any value from 34 to 46 (°C)	1	[10]
Q11	l. (a)	FeS2	do not accept equations	4	
	(b)	26		I	
	\ ⁻ ∕	-		1	
		30		1	
		26			

must be this order

- (c) any two from:
 - iron has a high(er) melting / boiling point
 - iron is dense(r)
 - iron is hard(er)
 - allow iron is less malleable / ductile
 - iron is strong(er)
 - iron is less reactive

allow specific reactions showing difference in reactivity

- iron has ions with different charges
- iron forms coloured compounds
 - iron can be a catalyst allow iron is magnetic allow the converse statements for sodium allow transition metal for iron allow Group 1 metal for sodium ignore references to atomic structure ignore iron rusts
- (d) carbon is more reactive (than nickel) *allow converse*

(so) carbon will displace / replace nickel (from nickel oxide) allow (so) nickel ions gain electrons

- or
- (so) carbon will remove oxygen (from nickel oxide) allow (so) carbon transfers electrons to nickel (ions)
- (e) (total *M*r of reactants =) 87

(percentage atom economy)

$$=\frac{59}{87}\times100$$

allow (percentage atom economy) = $\frac{59}{in correctly calculated M_r} \times 100$

1

2

1

1

1

= 67.8 (%)

allow an answer from an incorrect

Page 13 of 18

calculation to 3 sig figs 1 an answer of 67.8 (%) scores 3 marks an answer of 67.8160919 (%) or correctly rounded answer to 2, 4 or more sig figs scores 2 marks an incorrect answer for one step does not prevent allocation of marks for subsequent steps [11] Q12. (a) potassium chloride and iodine either order allow KCl for potassium chloride and I2 for iodine 1 (b) (chlorine's) outer electrons / shell closer to the nucleus allow chlorine has fewer shells allow chlorine atom is smaller than iodine atom ignore chlorine has fewer outer shells 1 (so) the chlorine nucleus has greater attraction for outer electrons / shell allow chlorine has less shielding do not accept incorrect types of attraction 1 (so) chlorine gains an electron more easily 1 max 2 marks can be awarded if the answer refers to chloride / iodide instead of chlorine / iodine allow converse statements allow energy levels for shells throughout hydrogen chloride is made of small molecules (C) allow hydrogen chloride is simple molecular 1 (so hydrogen chloride) has weak intermolecular forces* 1 (intermolecular forces) require little energy to overcome* 1 *do not accept reference to bonds breaking unless applied to

Page 14 of 18

[11]

	intermolecular bonds			
(bonds brok	en = 4(412) + 193 =)1841	1		
(bonds form	ed = 3(412) + 366 + X =) 1602 + X	1		
-51 = 1841	- (1602 + X) allow use of incorrectly calculated values of bonds broken and / or bonds formed from steps 1 and 2 for steps 3 and 4	1		
(X =) 290 (k	J/mol)			
. , .	allow a correctly calculated answer from use of $-51 =$ bonds formed – bonds broken			
	biokon	1		
OR				
alternative n	nethod ignoring the 3 unchanged C−H bonds			
(412 + 193 =) 605 (1)				
366 + X (1)				
-51 = 605 -	· (366 + X) (1)			
(X =) 290 (kJ/mol) (1)				
() (an answer of 290 (kJ/mol) scores 4			
	an answer of 188 (kJ/mol) scores 3			
	an incorrect answer for one step does not prevent allocation of marks for subsequent steps			
J		1		
MandO		'		
W and Q	either order	1		
Q		1		
	(bonds brok (bonds form -51 = 1841 (X =) 290 (k OR alternative r (412 + 193 = 366 + X (1) -51 = 605 - (X =) 290 (k J J M and Q	<pre>intermolecular bonds (bonds broken = 4(412) + 193 =)1841 (bonds formed = 3(412) + 366 + X =) 1602 + X -51 = 1841 - (1602 + X) allow use of incorrectly calculated values of bonds broken and / or bonds formed from steps 1 and 2 for steps 3 and 4 (X =) 290 (kJ/mol) allow a correctly calculated answer from use of -51 = bonds formed - bonds broken OR alternative method ignoring the 3 unchanged C-H bonds (412 + 193 =) 605 (1) 366 + X (1) -51 = 605 - (366 + X) (1) (X =) 290 (kJ/mol) (1) an answer of 290 (kJ/mol) scores 4 marks an answer of 188 (kJ/mol) scores 3 marks an incorrect answer for one step does not prevent allocation of marks for subsequent steps J M and Q either order Q</pre>		

(d) M 1

1

- (e) L
- (f) Level 3 (5-6 marks):
 A judgement, strongly linked and logically supported by a sufficient range of correct reasons, is given.

KnowledgeSet

Level 2 (3-4 marks): Some logically linked reasons are given. There may also be a simple judgement.

Level 1 (1-2 marks): Relevant points are made. They are not logically linked.

Level 0 No relevant content

Indicative content

comparative points

- both tables have more than one element in a box
- both have similar elements in the same column
- both are missing the noble gases
- both arranged elements in order of atomic weight

advantages of Mendeleev / disadvantages of Newlands

- Newlands did not leave gaps for undiscovered elements
- Newlands had many more dissimilar elements in a column
- Mendeleev left gaps for undiscovered elements
- Mendeleev changed the order of some elements (e.g. Te and I)

points which led to the acceptance of Mendeleev's table

- Mendeleev predicted properties of missing elements
- elements with properties predicted by Mendeleev were discovered
- Mendeleev's predictions turned out to be correct
- elements were discovered which fitted the gaps

[11]

6

Q14.

(a)	The forces between iodine molecules are stronger	1
(b)	anything in range +30 to +120	1
(c)	Brown	1
(d)	$2 I^- + CI2 \rightarrow I2 + 2 CI^-$	1
(e)	It contains ions which can move	1

	(f)	hydro	gen iodine	1	[6]
Q1!	5. (a)	atomi	ic weights must be in this order	1	
		electr	rons	1	
		proto	n numbers	1	
	(b)	(i)	H/hydrogen allow H2 or h	1	
		(ii)	one / 1 <i>allow alkali metals</i>	1	
		(iii)	Potassium (K)	1	
		(iv)	Iron has a higher density than potassium	1	
			Iron forms ions that have different charges	1	
	(c)	any tl • •	hree from: melts fizzes / bubbles / effervesces <i>allow gas produced</i> sodium floats size of the sodium decreases <i>allow</i> <i>dissolves / disappears</i> sodium moves <i>allow two marks for moves around on the surface of</i> <i>the water</i>	3	[11]
Q1(б. (а)	(i)ato	mic weights allow atomic masses	1	
		(ii)	proton allow proton number	1	

[8]

(i)	F/fluorine allow F2	
		1
(ii)	 any one from: copper has a higher density copper is stronger copper is harder copper is less reactive allow named property ignore colour, conductivity, melting point and boiling point 	
	allow converse for potassium	1
(iii)	relative distance from nucleus allow more / fewer energy levels / shells or larger / smaller atom	1
	relative attraction to nucleus allow more / less shielding	1
	relative ease of gain or loss of electron	1
	opposite explanation of ease of gain or loss of electron for other group	1
	max 3 marks if 'outer' not mentioned	-
	(i) (ii) (iii)	 (i) F/fluorine <i>allow F2</i> (ii) any one from: copper has a higher density copper is stronger copper is harder copper is less reactive <i>allow named property</i> <i>ignore colour, conductivity, melting point and boiling</i> <i>point</i> <i>allow converse for potassium</i> (iii) relative distance from nucleus <i>allow more / fewer energy levels / shells or larger /</i> <i>smaller atom</i> relative attraction to nucleus <i>allow more / less shielding</i> relative ease of gain or loss of electron opposite explanation of ease of gain or loss of electron for other group <i>max 3 marks if 'outer' not mentioned</i>

KnowledgeSet